

Differential Pumping with an Insert of a **Narrow Aperture in the PIP2IT MBET**

Alex Chen on behalf of the PIP2IT task force:

Outline

- Motivation and Layout MEBT of Absorber to HWR(DP section)
- Function Requirement
- Design of DPI
 - Mechanical solution
 - Vacuum solution
 - Electrical solution
 - Thermal solution
- DPI-FV Vacuum test setup
- Vacuum Test results
- Summary

DP Layout (Absorber to HWR)

The primary purpose of differential pumping section is to minimize the gas flux and particulates from MEBT to HWR during operation or vacuum failure in MEBT

FRS of DPI (ED0004472)

DPI Requirments

Parameters	Value	Units
Position alignment of the DPI tube with	≤ 0.5	mm
respect to beam line axis		
Angular alignment with respect to	≤ 2	mrad
beam line axis*1		
Cooling	Natural air	
	convection	
Maximum average power	25	W
Maximum pulse energy deposition*2	0.4	J
Electrical isolation with respect to	300	V
ground		
Maximum current to report	20 /200	μA
(CW/tuning)		
Current reading accuracy *3	≤ 1 / 10	μA
(CW/tuning)		
Accident detection: minimum trip		
level*4		
Averaged over 5 µs	100	μA
Averaged over $1/60 \text{ s} = 16.6 \text{ ms}$	5	μA

Relevant beam parameters

Parameters	Valu	Unit
	е	S
lon type	H-	
Beam energy	2.1	MeV
Operation mode		
Nominal beam size at	8/8	mm
DPI (6σ), X/Y		
Maximum beam	10	mA
current, CW		
Tuning mode		
Pulse repetition rate	Hz	20
Pulse length	μs	20
Maximum pulse beam	10	mA
current		

Recommended DPI Parameters

Parameters	Value	Units
Material of beam – exposed portion of DPI tube	copper	
Minimum diameter of DPI tube	10	mm
Length of DPI tube	200	mm
Ion pump speed	100	1/s

Mechanical

- Insertion length with Ion Pump: 435mm
- Positioning

Position alignment of the DPI tube with respect to beam line axis	≤ 0.5	mm
Angular alignment with respect to beam line axis*1	≤ 2	mrad

- DPI is supported common girder with adjustment
- Position of aperture is determined by aligning cooling disc OD

Vacuum considerations

- Absorber is high outgassing of Hydrogen (at level of 10⁻⁴ torr.l/s) and loose particles
- Uniform outgassing rate applied inner surfaces of SS and Copper
- Pump distribution studied
- Distance of DPI-IP studied
- Pressure ratio of before/after DPI calculated
- Detail Results show in ppt of Molflow+ Simulation

Design of DPI

Pressure Profile by MolFlow Simulation

(Absorber to HWR, 1E-5 mbar.l/s H2,)

Thermal solution

Analyses were done on 1)material choices of inner tube, 2)heating distributions, 3)relative longitudinal positions

1st Test on MEBT DPI-FV M81VFC M71S2P M72WRP M61VSO M63WRP M92WRP PARTICLE FAST **PROTOTYPE** DIFFERENTIA RWCM New ACT GATE ABSORBER PUMPING w/ TOROID Pneumatic GAUGE PROTOTYPE W/ FUTURE WIRE VAVLE SCRAPER SCANNER-BELLOWS. Fast M52WRP Acting Gauge **PUMPING TEE** Valve SNS DUMP **New Gauge** M72PIO M63DIP M11PIP V1=36.5 liters(M61VSO-FV) Leaker Volume=0.3 liter V2=95.1 liters(POST FV) Permeation rate from Scanner O-Ring is about 6E-PG LD 7 torr.l/s

Setup of Test

With current 45 l/s, 3E-9 torr has been achieved without baking

Differential Pumping Effect

Vacuum Gauge reading on Beamline (Leak From Upstream of DPI)

Vacuum Gauge Reading in Small Volume (Leak From Upstream of DPI)

PIE-II

Vacuum Gauge Reading in Small Volume (Leak From Upstream of DPI)

T2 = 24-AUG-2018 16:00:00.000

T1 = 24-AUG-2018 09:00:00.000

Vacuum Gauge Reading in Small Volume (Leak From Upstream of DPI)

PIP-II

Vacuum Gauge reading on Beamline

(Leak From Downstream of DPI)

Vacuum Gauge Reading in Small Volume (Leak From Downstream of DPI)

Vacuum Gauge reading on Beamline (Leak From Downstream of DPI)

Vacuum Gauge Reading in Small Volume(Leak From Downstream of DPI)

Vacuum Gauge reading on Beamline (Leak From Downstream of DPI)

Vacuum Gauge Reading in Small Volume (Leak From Downstream of DPI)

Summary of Results

	Leaker	CCG500 R	eading			monolayor	Lookor
	Reservoir	P0 (before)	P1 (after)	dP	Gas Amount	monolayer coverage	Leaker Location
	torr	torr	torr	torr	torr.liter	cm ²	
22 Aug	1.7	6.2E-09	1.7E-07	1.6E-07	4.6E-07	1.3E-02	
23-Aug	52	7.5E-09	1.9E-07	1.8E-07	5.1E-07	1.5E-02	US DPI
	760	7.9E-09	2.0E-07	1.9E-07	5.4E-07	1.6E-02	ואס טאו
24-Aug	760	2.3E-08	2.3E-07	2.1E-07	5.8E-07	1.7E-02	
	9.5	7.3E-09	3.8E-05	3.8E-05	1.1E-04	3.1E+00	
1-Oct	350	2.1E-08	1.4E-05	1.4E-05	3.9E-05	1.1E+00	
	810	1.0E-07	4.5E-05	4.5E-05	1.3E-04	3.6E+00	חכ טטו
8-Oct	1.2	6.1E-09	5.1E-04	5.1E-04	1.4E-03	4.1E+01	DS DPI
9-Oct	130	6.0E-09	5.8E-07	5.7E-07	1.6E-06	4.6E-02	
	760	3.0E-08	2.5E-06	2.5E-06	6.9E-06	2.0E-01	

Gas Past Fast Valve in Vacuum Failures

Summary

- DPI-FV protection system functions well in test, meet the requirement.
- The amount of gas past through FV is insignificant in term of monolayer coverage, as result, the peak pressure short lived as soon as gas-surface rebalanced
- The amount of gas past through FV is not directly driven by the size of leak
- Differential Pumping Insert (DPI) throttled the gas flux significantly, about 2 decades.
- Current configuration works, the amount of gas past FV is small enough
 - 1) not able to move particulates,
 - 2) insignificant for surface condensation of cavities

DPI Effect vanishing as larger leaks, however it buys a couple of second of time which is critical to minimizing gas flux into CMs

